Page 12 - LAPLACE TRANSFORM
P. 12

Find Laplace Transform, of the following by using the Definition

                of Laplace Transform.

                    f ( t) =  sin at

                            ∞

                       F s( ) = ∫ ο e −st  sinat dt ..........(1)

              #Formula for part by part integration


                         =
                         ∫  udv uv − ∫  vdu
              Integrate part by part;

                        u =  e − st               du =  − se − st  dt

                                                1
                          ∫
                    ∫
                        dv  = sin at   dt    v =  − cos at
                                                a
                  ∴F s( ) =  − e − st  cos at −  −  1  cos at ( se−  − st )dt


                             a          ∫  a

                                 −=  e − st  cos at −  s  ∫ e −st  cos at dt …………………………..(2)

                              a          a

              From  (2)  let:

                             A  = e −st  cos at dt
                                 ∫

                                  − st                    − st

                                       u = e                 du =  − se  dt

                                     dv  = cos at      v =  1  sin at
                            ∫
                                  ∫
                                                      a
                                  −st
                                     A =  e a  sin at − ∫  1 sin at (−se −st ) dt
                                              a





                                                                                                               5
   7   8   9   10   11   12   13   14   15   16   17