Page 12 - LAPLACE TRANSFORM
P. 12
Find Laplace Transform, of the following by using the Definition
of Laplace Transform.
f ( t) = sin at
∞
F s( ) = ∫ ο e −st sinat dt ..........(1)
#Formula for part by part integration
=
∫ udv uv − ∫ vdu
Integrate part by part;
u = e − st du = − se − st dt
1
∫
∫
dv = sin at dt v = − cos at
a
∴F s( ) = − e − st cos at − − 1 cos at ( se− − st )dt
a ∫ a
−= e − st cos at − s ∫ e −st cos at dt …………………………..(2)
a a
From (2) let:
A = e −st cos at dt
∫
− st − st
u = e du = − se dt
dv = cos at v = 1 sin at
∫
∫
a
−st
A = e a sin at − ∫ 1 sin at (−se −st ) dt
a
5