Page 15 - LAPLACE TRANSFORM
P. 15
1
∫
∫
dv = sin at dt v = − cos at
a
e − st 1
( se
A = − cos at − ∫ − cos at − − st )dt
a a
e − st s
A −= cos at − ∫ e − st cos at dt ………………………………..(5)
a a
From (1) and (5) ,
e −st s
A = − cos at − F ( ) s ………………………………………….(6)
a a
From (6) we substitute into (4)
e −st s e −st s
F s( ) = sin at + − cos at − F s
( )
a a a a
e − st se −st s 2
= − cos at − F ( ) s
a a 2 a 2
2
s F ( ) s e − st se −st
= F s( ) + − cos at
a 2 a a 2
2
a + s e − st s
2
= F ( ) s = sin at − cos at
a 2 a a
ae − st s ∞
= F s( ) = sin at − cos at
2
2
s + a a ο
a 1 s
(
F s) = − 0 − cos 0
s + a ∞ a
2
2
a s
=
2
2
s + a
a
s
=
s + a 2
2
8