Page 83 - LAPLACE TRANSFORM
P. 83

Solve the differential equation        − 3     − 10     = 2      (0) = 1,      (0) = 2
                                                               ′
                                                                                      ′
                                                        ′′

                STEP 1: Take the Laplace Transform for both sides.
                                                               1
                                                              −
                                                            =
                                                        if
                                                           s
                          L [ ] [ ] 10)(3)(ty  ' '  −  L  y '  t −  [ ] [ ] 2)(ty  = L


                STEP 2: Substitude the theorem for Left Hand Side (LHS) .

                           Find the Laplace for Right Hand Side (RHS)
                                                                          ] 2
                                                                 −
                          [ Ys 2  s ) ( − sy  ) 0 ( −  ) 0 ( ' y  ] [ (3 sY  s ) −  ) 0 ( y  ] 10 [ (sY  ) =
                                                −


                STEP 3 : Substitude the values of y(0)=1, y (0)=2
                                                                 ’
                          [ Ys 2  s ) ( − s  ) 1 ( − 2 −  s ) − 1 −  [ (sY  ) =
                                                      ] 10
                                          ] [ (3 sY
                                                                ] 2

                STEP 4 : Solve for Y(s)
                           s 2 Y (s ) − s  −  2 − 3sY (s ) + 3 − 10Y (s ) =  2
                                                                s
                                               2
                           Y (s )[s 2  − 3 −s  10 ] =  + s  +  2 − 3
                                               s
                                           s 2  − s  +  2
                                 Y (s ) =
                                        s ( −s  5 )( +s  ) 2
                STEP 5 : Solve for the inverse ,     (    ) =      −     [    (    )] using Partial Fraction.

                           s 2  − s  +  2  A   B       C
                                      =    +       +
                          s ( −s  5 )( +s  ) 2  s  ( −s  ) 5  ( +s  ) 2
                      s 2 −  + s  2 = A (s  )( 5 −  + s  ) 2 + B (s )( +s  ) 2 +c (s )(s  ) 5 −  …………….equation (1)




                If s=-1                                         if s=-5

                         ) 0 (  2  − 0 + 2 = A  0 ( − 5 )( 0 +  ) 2
                                                             ) 5 (
                                2 = A (− 5 )(  ) 2             2  − 5+ 2 =  5 ( B  )( 5+  ) 2

                                2 = A (− 10 )                      22 =   5 ( B  )(  ) 7
                                       2     1                         22
                                 A  =  −  =  −                     B  =
                                      10     5                         35
                If s = -2

                           2
                       (−  ) 2 − (−  ) 2 +  2 = C (− 2 )(− 2 −  ) 5
                               8 = C (− 2 )(−  ) 7
                                    8    4
                               C  =    =
                                   14    7




                                                                                                             76
   78   79   80   81   82   83   84   85   86   87   88