Page 81 - LAPLACE TRANSFORM
P. 81

Example   3







                                                       2              + 2     = 24     0( =y  )  , 10 y '  ) 0 ( =
                                                               
               Solve the differential equation           + 3                                0
                                                                2            


                STEP 1: Take the Laplace Transform for both sides.
                                                         24
                              ' '
                                         '
                                              2
                                           ) (t +
                                    3 yL
                                                   ) (t y
                                                     =
                             y
                           L [ ] [ ] [ ] [ ]
                                ) (t +
                                                       L


                STEP 2: Substitude the theorem for Left Hand Side (LHS) .
                           Find the Laplace for Right Hand Side (RHS)

                                                                            24
                                                                ] 2
                                                             (
                                                              0
                                     (
                                               ] [sY(3
                                              )
                                            (
                                      0
                                            '
                          [ Ys 2  ( s) − sy ) −  y 0 −  s) −  y ) +  [Y( s) ] =

                                                                             s
                                                                   ’
                STEP 3 : Substitude the values of y(0)=10, y (0)=0

                                              )
                                       )
                                            '
                                            (
                                                             0
                                                                ] 2
                                               ] [sY(3
                                                             (
                                    (
                          [ Ys 2  ( s) − s 10 −  y 0 −  s) −  y ) +  [Y( s) ] =  24
                                                                            s
                STEP 4 : Solve for Y(s)
                                                                   24
                           s 2 Y (s ) − 10 − 0 − 3sY (s ) − 30 +  2Y (s ) =       Partial
                                      s
                                                                   s             fraction 1
                                               24
                           Y (s )[s 2  + s  ] 2 =  + 10 + 30
                                                      s
                                     3 +
                                               s
                                                               +
                                              24           10s  30
                                 Y (s ) =              +
                                           s
                                                              )( +
                                                          s
                                               )( +
                                         s ( + 1 s   ) 2  ( +   1 s  ) 2
                                                            −    
                STEP 5 : Solve for the inverse ,     (    ) =       [    (    )] using Partial Fraction.

                               24         A     B        C
                                       =    +        +
                                                        s
                                               s
                         s ( + 1 )( +  ) 2  s  ( +  ) 1  ( +  ) 2
                           s
                                 s
                         24 =  A (s + 1 )(s +  ) 2 +  B (s )(S +  ) 2 +  C (   )(ss  + 1 ).....eq  1

                                                               s=-2
                If s=0                                        if
                24 = A  0 ( + 1 )( 0 +  ) 2 +  ) 0 ( B  + C  ) 0 (  24 =               )0()0 ( A  + B  + C (− 2 )(− 2 +  ) 1
                24 =    ) 2 ( A                       24 = C  ) 2 (
                    24                                    24
                A  =   = 12                          C  =    = 12
                     2                                    2






                                                                                                             74
   76   77   78   79   80   81   82   83   84   85   86