Page 67 - LAPLACE TRANSFORM
P. 67

Example   3






             Find the Inverse Laplace Transform by using Partial Fraction.

                             s
                           2 +  3
                F (s ) =
                              s
                        s
                       ( +  1 )( −  ) 2  2
                                           2 + 3         A        B         C
                                            s
                                                     =       +         +
                                        s
                                       ( + 1 )( −  ) 2  2  ( +  ) 1  ( −  ) 2  ( −  ) 2  2
                                              s
                                                        s
                                                                s
                                                                          s

                                            2
                            2 +s  3 = A ( −s  ) 2 + B ( +s  1 )( −s  ) 2 + C ( +s  ) 1 ----------equation (1)
             if  s  =  − 1
                                                             1−
                                                   (2 −  ) 1 + 3 = A (−    2 )(− 1−  ) 2
                                                           1=     ) 9 ( A
                                                                        1
                                                           A  =
                                                                9

             if  s  = 2

                                                           2(2  ) + 3    =C (3)


                                                                       7 =  3C
                                                                 7

                                                                                         C  =    3



             To find the value of A and B, we will solve by comparing the coefficient.

             To compare the coefficient we have to expand the equation in (1).















                                                                                                             60
   62   63   64   65   66   67   68   69   70   71   72